brails.processors.foundation_classifier.csail_segmentation_tool.csail_seg.lib.utils.data.sampler module
- class brails.processors.foundation_classifier.csail_segmentation_tool.csail_seg.lib.utils.data.sampler.BatchSampler(sampler, batch_size, drop_last)
Bases:
object
Wraps another sampler to yield a mini-batch of indices.
- Args:
sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If
True
, the sampler will drop the last batch ifits size would be less than
batch_size
- Example:
>>> list(BatchSampler(range(10), batch_size=3, drop_last=False)) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] >>> list(BatchSampler(range(10), batch_size=3, drop_last=True)) [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
- class brails.processors.foundation_classifier.csail_segmentation_tool.csail_seg.lib.utils.data.sampler.RandomSampler(data_source)
Bases:
Sampler
Samples elements randomly, without replacement.
- Arguments:
data_source (Dataset): dataset to sample from
- class brails.processors.foundation_classifier.csail_segmentation_tool.csail_seg.lib.utils.data.sampler.Sampler(data_source)
Bases:
object
Base class for all Samplers.
Every Sampler subclass has to provide an __iter__ method, providing a way to iterate over indices of dataset elements, and a __len__ method that returns the length of the returned iterators.
- class brails.processors.foundation_classifier.csail_segmentation_tool.csail_seg.lib.utils.data.sampler.SequentialSampler(data_source)
Bases:
Sampler
Samples elements sequentially, always in the same order.
- Arguments:
data_source (Dataset): dataset to sample from
- class brails.processors.foundation_classifier.csail_segmentation_tool.csail_seg.lib.utils.data.sampler.SubsetRandomSampler(indices)
Bases:
Sampler
Samples elements randomly from a given list of indices, without replacement.
- Arguments:
indices (list): a list of indices
- class brails.processors.foundation_classifier.csail_segmentation_tool.csail_seg.lib.utils.data.sampler.WeightedRandomSampler(weights, num_samples, replacement=True)
Bases:
Sampler
Samples elements from [0,..,len(weights)-1] with given probabilities (weights).
- Arguments:
weights (list) : a list of weights, not necessary summing up to one num_samples (int): number of samples to draw replacement (bool): if
True
, samples are drawn with replacement.If not, they are drawn without replacement, which means that when a sample index is drawn for a row, it cannot be drawn again for that row.