brails.processors.FoundationClassifier.attention_utils.utils module
- brails.processors.FoundationClassifier.attention_utils.utils.construct_confusion_matrix_image(classes, con_mat)
- brails.processors.FoundationClassifier.attention_utils.utils.evaluate(summary_writer, mode_name, y_gt, y_pred, avg_loss, classes, epoch)
- brails.processors.FoundationClassifier.attention_utils.utils.sliding_window(data, size, stepsize=1, padded=False, axis=-1, copy=True)
Calculate a sliding window over a signal Parameters ———- data : numpy array
The array to be slided over.
- sizeint
The sliding window size
- stepsizeint
The sliding window stepsize. Defaults to 1.
- axisint
The axis to slide over. Defaults to the last axis.
- copybool
Return strided array as copy to avoid sideffects when manipulating the output array.
Returns
- datanumpy array
A matrix where row in last dimension consists of one instance of the sliding window.
Notes
Be wary of setting copy to False as undesired sideffects with the output values may occur.
Examples
>>> a = numpy.array([1, 2, 3, 4, 5]) >>> sliding_window(a, size=3) array([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) >>> sliding_window(a, size=3, stepsize=2) array([[1, 2, 3], [3, 4, 5]]) See Also -------- pieces : Calculate number of pieces available by sliding