brails.processors.foundation_classifier.attention_utils.utils module
- brails.processors.foundation_classifier.attention_utils.utils.construct_confusion_matrix_image(classes, con_mat)
- brails.processors.foundation_classifier.attention_utils.utils.evaluate(summary_writer, mode_name, y_gt, y_pred, avg_loss, classes, epoch)
- brails.processors.foundation_classifier.attention_utils.utils.sliding_window(data, size, stepsize=1, padded=False, axis=-1, copy=True)
Calculate a sliding window over a signal :param data: The array to be slided over. :type data: numpy array :param size: The sliding window size :type size: int :param stepsize: The sliding window stepsize. Defaults to 1. :type stepsize: int :param axis: The axis to slide over. Defaults to the last axis. :type axis: int :param copy: Return strided array as copy to avoid sideffects when manipulating the
output array.
- Returns:
data – A matrix where row in last dimension consists of one instance of the sliding window.
- Return type:
numpy array
Notes
Be wary of setting copy to False as undesired sideffects with the output values may occur.
Examples
>>> a = numpy.array([1, 2, 3, 4, 5]) >>> sliding_window(a, size=3) array([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) >>> sliding_window(a, size=3, stepsize=2) array([[1, 2, 3], [3, 4, 5]])
See also
pieces
Calculate number of pieces available by sliding