brails.processors.vlm_segmenter.grounded_sam_utils module
- class brails.processors.vlm_segmenter.grounded_sam_utils.BoundingBox(xmin: int, ymin: int, xmax: int, ymax: int)
Bases:
object
- xmax
- xmin
- property xyxy
- ymax
- ymin
- class brails.processors.vlm_segmenter.grounded_sam_utils.DetectionResult(score: float, label: str, box: brails.processors.vlm_segmenter.grounded_sam_utils.BoundingBox, mask: Optional[<built-in function array>] = None)
Bases:
object
- box
- classmethod from_dict(detection_dict)
- label
- mask = None
- score
- brails.processors.vlm_segmenter.grounded_sam_utils.build_models(device='cuda:0')
- brails.processors.vlm_segmenter.grounded_sam_utils.detect(image, labels, threshold=0.3, detector_id=None)
Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
- brails.processors.vlm_segmenter.grounded_sam_utils.run_on_one_image(img_source, output_dir, grounding_dino_model, sam_predictor, CLASS_TO_CODE, BOX_THRESHOLD=0.35, TEXT_THRESHOLD=0.25, NMS_THRESHOLD=0.8, visualize=False)
- brails.processors.vlm_segmenter.grounded_sam_utils.segment(sam_predictor, image, xyxy)
- brails.processors.vlm_segmenter.grounded_sam_utils.show_binary_mask(mask, ax, label_code)
- brails.processors.vlm_segmenter.grounded_sam_utils.show_box(box, ax)
- brails.processors.vlm_segmenter.grounded_sam_utils.show_points(coords, labels, ax, marker_size=375)
- brails.processors.vlm_segmenter.grounded_sam_utils.verify_and_download_models(download_url, filepath)