brails.processors.year_built_classifier.Resnet module
- class brails.processors.year_built_classifier.Resnet.ResNet(block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None)
Bases:
Module
- forward(x)
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- brails.processors.year_built_classifier.Resnet.resnet101(pretrained=False, progress=True, **kwargs)
Constructs a ResNet-101 model. :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- brails.processors.year_built_classifier.Resnet.resnet152(pretrained=False, progress=True, **kwargs)
Constructs a ResNet-152 model. :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- brails.processors.year_built_classifier.Resnet.resnet18(pretrained=False, progress=True, **kwargs)
Constructs a ResNet-18 model. :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- brails.processors.year_built_classifier.Resnet.resnet34(pretrained=False, progress=True, **kwargs)
Constructs a ResNet-34 model. :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- brails.processors.year_built_classifier.Resnet.resnet50(pretrained=False, progress=True, **kwargs)
Constructs a ResNet-50 model. :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- brails.processors.year_built_classifier.Resnet.resnext101_32x8d(**kwargs)
- brails.processors.year_built_classifier.Resnet.resnext50_32x4d(**kwargs)