2.2.1. LF - Lifeline FacilitiesΒΆ

The following models are available:

LF.AGR1 | Lifeline Facilities, Agriculture

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Agriculture

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM1 | Lifeline Facilities, Retail Trade

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Retail Trade such as stores

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM10 | Lifeline Facilities, Parking

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Parking

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM2 | Lifeline Facilities, Wholesale Trade

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Wholesale Trade such as warehouses

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM3 | Lifeline Facilities, Personal and Repair Services

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Personal and Repair Services such as service stations and repair shops

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM4 | Lifeline Facilities, Professional and Technical Services

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Professional and Technical Services such as Offices

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM5 | Lifeline Facilities, Banks and Financial Institutions

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Banks and Financial Institutions

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM6 | Lifeline Facilities, Hospital

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Hospital

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM7 | Lifeline Facilities, Medical Office and Clinic

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Medical Office and Clinic

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM8 | Lifeline Facilities, Entertainment and Recreation

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Entertainment and Recreation including restaurants and bars

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.COM9 | Lifeline Facilities, Theaters

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy type: Theatres

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.EDU1 | Lifeline Facilities, Schools

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Schools

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.EDU2 | Lifeline Facilities, Colleges/Universities

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Colleges/Universities excluding group housing

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.GOV1 | Lifeline Facilities, General Government Services

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: General Government Services offices

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.GOV2 | Lifeline Facilities, Emergency Response

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Emergency Response such as Police and Fire Stations

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.IND1 | Lifeline Facilities, Heavy Industry

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Heavy Industry factories

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.IND2 | Lifeline Facilities, Light Industry

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Light Industry factories

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.IND3 | Lifeline Facilities, Food/Drugs/Chemicals

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Food/Drug/Chemical plants

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.IND4 | Lifeline Facilities, Metals/Minerals Processing

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Metals/Minerals Processing plants

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.IND5 | Lifeline Facilities, High Technology

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: High Technology factories

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.IND6 | Lifeline Facilities, Construction

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Construction Offices

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.REL1 | Lifeline Facilities, Church

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Church

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.RES1 | Lifeline Facilities, Single-family Dwelling

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Single-family Dwelling, Detached House

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.RES2 | Lifeline Facilities, Mobile Home

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Mobile Home

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.RES3 | Lifeline Facilities, Multi-family Dwelling

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Multi-family Dwelling, Apartments, Condominiums

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.RES4 | Lifeline Facilities, Temporary Lodging

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Temporary Lodging such as Hotel, Motel

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.RES5 | Lifeline Facilities, Institutional Dormitory

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Institutional Dormitory, including group housing (military, college) as well as jails

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time


LF.RES6 | Lifeline Facilities, Nursing Home

Lifeline Facility damage functions are expressed in terms of an equivalent value of PGA for efficient evaluation of buildings that are components of utility and transportation systems. Only structural damage functions are developed based on PGA, since structural damage is considered the most appropriate measure of damage for utility and transportation system facilities. Median values of equivalent-PGA fragility curves are based on median values of spectral displacement of the damage state of interest and an assumed demand spectrum shape that relates spectral response to PGA. As such, median values of equivalent PGA are very sensitive to the shape assumed for the demand spectrum. Spectrum shape is influenced by earthquake source (i.e., WUS vs. CEUS attenuation functions), earthquake magnitude (e.g., large vs. small magnitude events), distance from source to site, site conditions (e.g., soil vs. rock), and effective damping, which varies based on building properties and earthquake duration (e.g., short, moderate, or long duration). These fragility curves were developed for a single set of spectrum shape factors (a reference spectrum), and a formula is provided for modifying damage state medians to approximate other spectrum shapes. The reference spectrum represents ground shaking of a large magnitude (i.e., M7.0) western United States (WUS) earthquake for soil sites (e.g., Site Class D) at site-to-source distances of 15 km or greater.
Occupancy Type: Nursing Home

Suggested Block Size: 1 EA (round up to integer quantity)

The following repair consequences are available for this model:

Cost

Time