WIN.regular - Regular

The following models are available:

WIN.regular.001a | Regular Window - General fragility

Suggested Block Size: 1 EA


Peng, J. 2013. Modeling natural disaster risk management: Integrating the roles of insurance and retrofit and multiple stakeholder perspectives. Ph.D. United States – Delaware: University of Delaware.
Gurley, K., J. P. Pinelli, C. Subramanian, A. Cope, L. Zhang, J. Murphree, A. Artiles, P. Misra, S. Gulati, and E. Simiu. 2005. Florida Public Hurricane Loss Projection Model engineering team final report volume II: Predicting the vulnerability of typical residential buildings to hurricane damage. Technical report. Florida International University: International Hurricane Research Center.

WIN.regular.001b | Regular Window - General fragility

Suggested Block Size: 1 EA


Gurley, K., J. P. Pinelli, C. Subramanian, A. Cope, L. Zhang, J. Murphree, A. Artiles, P. Misra, S. Gulati, and E. Simiu. 2005. Florida Public Hurricane Loss Projection Model engineering team final report volume II: Predicting the vulnerability of typical residential buildings to hurricane damage. Technical report. Florida International University: International Hurricane Research Center.
Unnikrishnan, V. U., and M. Barbato. 2017. Multihazard Interaction Effects on the Performance of Low-Rise Wood-Frame Housing in Hurricane-Prone Regions. Journal of Structural Engineering, 143 (8): 04017076. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001797.
Jain, A., A. A. Bhusar, D. B. Roueche, and D. O. Prevatt. 2020. Engineering-Based Tornado Damage Assessment: Numerical Tool for Assessing Tornado Vulnerability of Residential Structures. Front. Built Environ., 6. Frontiers. https://doi.org/10.3389/fbuil.2020.00089.

WIN.regular.001c | Regular Window - General fragility

Suggested Block Size: 1 EA


Lin, S.-Y., W.-C. Chuang, L. Xu, S. El-Tawil, S. M. J. Spence, V. R. Kamat, C. C. Menassa, and J. McCormick. 2019. Framework for Modeling Interdependent Effects in Natural Disasters: Application to Wind Engineering. Journal of Structural Engineering, 145 (5): 04019025. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002310.

WIN.regular.002a | Regular Window on windward wall

Suggested Block Size: 1 EA


Lin, S.-Y., W.-C. Chuang, L. Xu, S. El-Tawil, S. M. J. Spence, V. R. Kamat, C. C. Menassa, and J. McCormick. 2019. Framework for Modeling Interdependent Effects in Natural Disasters: Application to Wind Engineering. Journal of Structural Engineering, 145 (5): 04019025. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002310.

WIN.regular.002b | Regular Window on non-windward wall

Suggested Block Size: 1 EA


Lin, S.-Y., W.-C. Chuang, L. Xu, S. El-Tawil, S. M. J. Spence, V. R. Kamat, C. C. Menassa, and J. McCormick. 2019. Framework for Modeling Interdependent Effects in Natural Disasters: Application to Wind Engineering. Journal of Structural Engineering, 145 (5): 04019025. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002310.

WIN.regular.003a | Window on a 1-story building

Suggested Block Size: 1 EA


Vickery, P. J., P. F. Skerlj, J. Lin, L. A. Twisdale, M. A. Young, and F. M. Lavelle. 2006. HAZUS-MH Hurricane Model Methodology. II: Damage and Loss Estimation. Nat. Hazards Rev., 7 (2): 94–103. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94).

WIN.regular.003b | Window on a 2-story building with 2 large windows

Suggested Block Size: 1 EA


Vickery, P. J., P. F. Skerlj, J. Lin, L. A. Twisdale, M. A. Young, and F. M. Lavelle. 2006. HAZUS-MH Hurricane Model Methodology. II: Damage and Loss Estimation. Nat. Hazards Rev., 7 (2): 94–103. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94).

WIN.regular.004 | Regular Window 1/8 in 20 sq ft

Suggested Block Size: 1 EA


Norville, H. S., and J. E. Minor. 1985. STRENGTH OF WEATHERED WINDOW GLASS. American Ceramic Society Bulletin, 64: 1467–1470.
Minor, J. E., and H. S. Norville. 1998. A simple window glass design chart. Journal of Wind Engineering and Industrial Aerodynamics, 77–78: 197–204. https://doi.org/10.1016/S0167-6105(98)00143-3.
Li, Y., and B. R. Ellingwood. 2006. Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment. Engineering Structures, 28 (7): 1009–1018. https://doi.org/10.1016/j.engstruct.2005.11.005
Dong, Y., and Y. Li. 2016. Risk-based assessment of wood residential construction subjected to hurricane events considering indirect and environmental loss. Sustainable and Resilient Infrastructure, 1 (1–2): 46–62. Taylor & Francis. https://doi.org/10.1080/23789689.2016.1179051.

WIN.regular.005a | Regular Window 3/16 in 40 sq ft

Suggested Block Size: 1 EA


Norville, H. S., and J. E. Minor. 1985. STRENGTH OF WEATHERED WINDOW GLASS. American Ceramic Society Bulletin, 64: 1467–1470.
Minor, J. E., and H. S. Norville. 1998. A simple window glass design chart. Journal of Wind Engineering and Industrial Aerodynamics, 77–78: 197–204. https://doi.org/10.1016/S0167-6105(98)00143-3.
Li, Y., and B. R. Ellingwood. 2006. Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment. Engineering Structures, 28 (7): 1009–1018. https://doi.org/10.1016/j.engstruct.2005.11.005

WIN.regular.005b | Regular Window 3/16 in 40 sq ft

Suggested Block Size: 1 EA


Norville, H. S., and J. E. Minor. 1985. STRENGTH OF WEATHERED WINDOW GLASS. American Ceramic Society Bulletin, 64: 1467–1470.
Minor, J. E., and H. S. Norville. 1998. A simple window glass design chart. Journal of Wind Engineering and Industrial Aerodynamics, 77–78: 197–204. https://doi.org/10.1016/S0167-6105(98)00143-3.
Li, Y., and B. R. Ellingwood. 2006. Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment. Engineering Structures, 28 (7): 1009–1018. https://doi.org/10.1016/j.engstruct.2005.11.005

WIN.regular.006 | Regular Window 3/16 in 20 sq ft

Suggested Block Size: 1 EA


Norville, H. S., and J. E. Minor. 1985. STRENGTH OF WEATHERED WINDOW GLASS. American Ceramic Society Bulletin, 64: 1467–1470.
Minor, J. E., and H. S. Norville. 1998. A simple window glass design chart. Journal of Wind Engineering and Industrial Aerodynamics, 77–78: 197–204. https://doi.org/10.1016/S0167-6105(98)00143-3.
Li, Y., and B. R. Ellingwood. 2006. Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment. Engineering Structures, 28 (7): 1009–1018. https://doi.org/10.1016/j.engstruct.2005.11.005

WIN.regular.007 | Regular Window small sized (3.5' x 3.5')

Suggested Block Size: 1 EA


Gurley, K., J. P. Pinelli, C. Subramanian, A. Cope, L. Zhang, J. Murphree, A. Artiles, P. Misra, S. Gulati, and E. Simiu. 2005. Florida Public Hurricane Loss Projection Model engineering team final report volume II: Predicting the vulnerability of typical residential buildings to hurricane damage. Technical report. Florida International University: International Hurricane Research Center.
Yau, S. C. 2011. Wind Hazard Risk Assessment and Management for Structures. Ph.D. United States – New Jersey: Princeton University.
Barbato, M., F. Petrini, V. U. Unnikrishnan, and M. Ciampoli. 2013. Performance-Based Hurricane Engineering (PBHE) framework. Structural Safety, 45: 24–35. https://doi.org/10.1016/j.strusafe.2013.07.002.

WIN.regular.008 | Regular Window medium sized (3.5' x 5.0')

Suggested Block Size: 1 EA


Gurley, K., J. P. Pinelli, C. Subramanian, A. Cope, L. Zhang, J. Murphree, A. Artiles, P. Misra, S. Gulati, and E. Simiu. 2005. Florida Public Hurricane Loss Projection Model engineering team final report volume II: Predicting the vulnerability of typical residential buildings to hurricane damage. Technical report. Florida International University: International Hurricane Research Center.
Grayson, J. M., W. Pang, and S. Schiff. 2013. Building envelope failure assessment framework for residential communities subjected to hurricanes. Engineering Structures, 51: 245–258. https://doi.org/10.1016/j.engstruct.2013.01.027.
Kakareko, G., S. Jung, S. Mishra, and O. A. Vanli. 2021. Bayesian capacity model for hurricane vulnerability estimation. Structure and Infrastructure Engineering, 17 (5): 638–648. Taylor & Francis. https://doi.org/10.1080/15732479.2020.1760318.

WIN.regular.009 | Regular Window tall sized (3.5' x 6.5')

Suggested Block Size: 1 EA


Gurley, K., J. P. Pinelli, C. Subramanian, A. Cope, L. Zhang, J. Murphree, A. Artiles, P. Misra, S. Gulati, and E. Simiu. 2005. Florida Public Hurricane Loss Projection Model engineering team final report volume II: Predicting the vulnerability of typical residential buildings to hurricane damage. Technical report. Florida International University: International Hurricane Research Center.
Grayson, J. M., W. Pang, and S. Schiff. 2013. Building envelope failure assessment framework for residential communities subjected to hurricanes. Engineering Structures, 51: 245–258. https://doi.org/10.1016/j.engstruct.2013.01.027.

WIN.regular.010 | Regular Window picture size (6.5' x 6.5')

Suggested Block Size: 1 EA


Gurley, K., J. P. Pinelli, C. Subramanian, A. Cope, L. Zhang, J. Murphree, A. Artiles, P. Misra, S. Gulati, and E. Simiu. 2005. Florida Public Hurricane Loss Projection Model engineering team final report volume II: Predicting the vulnerability of typical residential buildings to hurricane damage. Technical report. Florida International University: International Hurricane Research Center.
Grayson, J. M., W. Pang, and S. Schiff. 2013. Building envelope failure assessment framework for residential communities subjected to hurricanes. Engineering Structures, 51: 245–258. https://doi.org/10.1016/j.engstruct.2013.01.027.