8.1.8.1. pelicun.tools.DL_calculation
Main functionality to run a pelicun calculation from the command line.
Functions
|
Convert a pandas DataFrame to a dictionary. |
|
Print a formatted log message with a timestamp. |
|
Parse arguments and run the pelicun calculation. |
|
Use settings in the config JSON to prepare and run a Pelicun calculation. |
- pelicun.tools.DL_calculation.convert_df_to_dict(data: DataFrame | Series, axis: int = 1) dict [source]
Convert a pandas DataFrame to a dictionary.
- Parameters:
- datapd.DataFrame
The DataFrame to be converted.
- axisint, optional
The axis to consider for the conversion. * If 1 (default), the DataFrame is used as-is. * If 0, the DataFrame is transposed before conversion.
- Returns:
- dict
A dictionary representation of the DataFrame. The structure of the dictionary depends on the levels in the DataFrame’s MultiIndex columns.
- Raises:
- ValueError
If the axis is not 0 or 1.
Notes
If the columns have multiple levels, the function will recursively convert sub-DataFrames.
If the column labels at any level are numeric, they will be converted to a list of floats.
If the column labels are non-numeric, a dictionary will be created with the index labels as keys and the corresponding data as values.
- pelicun.tools.DL_calculation.log_msg(msg: str, color_codes: tuple[str, str] | None = None) None [source]
Print a formatted log message with a timestamp.
- Parameters:
- msgstr
The message to print.
- color_codestuple, optional
Color codes for formatting the message. Default is None.
- pelicun.tools.DL_calculation.run_pelicun(config_path: str, demand_file: str, output_path: str | None, realizations: int, auto_script_path: str | None, custom_model_dir: str | None, output_format: list | None, *, detailed_results: bool, coupled_edp: bool) None [source]
Use settings in the config JSON to prepare and run a Pelicun calculation.
- Parameters:
- config_path: string
Path pointing to the location of the JSON configuration file.
- demand_file: string
Path pointing to the location of a CSV file with the demand data.
- output_path: string, optional
Path pointing to the location where results shall be saved.
- realizations: int, optional
Number of realizations to generate.
- auto_script_path: string, optional
Path pointing to the location of a Python script with an auto_populate method that automatically creates the performance model using data provided in the AIM JSON file.
- custom_model_dir: string, optional
Path pointing to a directory with files that define user-provided model parameters for a customized damage and loss assessment.
- output_format: list, optional.
Type of output format, JSON or CSV. Valid options: [‘csv’, ‘json’], [‘csv’], [‘json’], [], None
- detailed_results: bool, optional
If False, only the main statistics are saved.
- coupled_edp: bool, optional
If True, EDPs are not resampled and processed in order.