4.9. Tsunami Debris Motion In a Scaled Port Setting - Digital Flume (WU TWB) - MPM

Problem files

Github

4.9.1. Overview

HydroUQ GUI configured as a digital flume for the Waseda University Tsunami Wave Basin; debris containers, harbor apron, and obstacle rows visible.

This example contributes to an international comparative analysis [Bonus2025] of 3D tsunami debris hazards by configuring a Waseda University Tsunami Wave Basin (WU TWB) digital flume in HydroUQ and running a baseline MPM case (ClaymoreUW, multi-GPU). We then contrast the MPM results with companion simulations produced using SPH (DualSPHysics, GPU) and Eulerian FVM CFD (Simcenter STAR-CCM+, multi-CPU/GPU)—focusing on wave generation, debris motion and spreading, stacking interactions, and impact loads on simplified port obstacles.

Three MPM scenarios with zero, one, and two rows of five obstacles in a port setting at 1:40 Froude scale.

The physical benchmark (1:40 Froude scaling) follows Goseberg et al. (2016b): a vacuum-controlled long wave surges over a harbor apron and mobilizes 3-6 hollow shipping-container surrogates arranged in 1-2 vertical layers against friction. Obstacle arrays (0, 1, or 2 rows of 5 square columns) are placed upstream or downstream of the debris with width = 0.66x and gap = 2.2x the debris length.

Schematic of WU TWB domain with debris/obstacles layout and probe stations.

Note

This HydroUQ example runs the MPM configuration natively. Companion SPH and FVM results can be imported (optional) for side-by-side plots in the Analysis section to mirror the comparative study. Acquire said data from: PRJ-5846.

4.9.2. Set-Up

4.9.2.1. Step 1: UQ

Configure Forward sampling to explore structural/material uncertainty under a fixed hydrodynamic signal.

  • Engine: Dakota

  • Forward Propagation: Sampling method (e.g., LHS) with samples (e.g., 20) and a reproducible seed (e.g., 1).

HydroUQ UQ panel with Dakota Forward selected, sample count and seed set.

4.9.2.2. Step 2: GI

Set General Information and Units consistent with experiments (length, time, density, gravity). Record project metadata.

  • Structure name: Wooden Column @ WU's Tsunami Wave Basin

  • Units: choose a consistent set (e.g., N-m-s or kips-in-s)

General Information panel with project name, metadata, and unit selections.

Note

Keep GI, SIM, EVT, and FEM units consistent. Match MPM’s length/time scales and OpenSees integration settings (e.g., time step). Verify any force/unit conversions used during load mapping.

4.9.2.3. Step 3: SIM

The structural model is as follows: a single-story Multi-Degree-of-Freedom system (MDOF, see Multiple Degrees of Freedom (MDOF)) replicating a stiff, wooden structural box in the experimental tests.

Schematic of a single-story MDOF structure representing a stiff, wooden structural box undergoing deflection from MPM derived hydrodynamic loading.

Fig. 4.9.2.3.1 Schematic of a single-story MDOF structure representing a stiff, wooden structural box undergoing deflection from MPM derived hydrodynamic loading.

Note

The structure will be represented initially as a rigid boundary in MPM to recover local hydrodynamic forces at grid nodes for direct comparison with load-cell data. Structural dynamic response is added later by mapping these loads onto an OpenSees model defined here in the SIM panel with analysis options set in the FEM panel.

Uncertain structural properties (treated as RVs; see Step 7):

  • w: Weight. Mean 144, stdev 12

Bind parameters via setting alphabetic characters in the variable input boxes (e.g., w) so the RV panel recognizes and manages them automatically.

SIM panel showing a single story MDOF system with uncertain variables w.

While not necessary to have, we show the template OpenSees model for your reference. The script generated in the backend by the MDOF module resembles the following, MDOF.tcl:

Click to expand the OpenSees input file used for this example
 1model BasicBuilder -ndm 3 -ndf 6
 2pset w 144.0
 3node 2 0 0 576 -mass $w $w  0.0  0.0  0.0  0.0
 4fix 2 0 0 1 1 1 0 
 5node 1 0 0 0 
 6fix 1 1 1 1 1 1 1 
 7uniaxialMaterial Steel01 1 1e+06 100 0.1
 8uniaxialMaterial Steel01 2 1e+06 100 0.1
 9uniaxialMaterial Elastic 3 1e+10
10element zeroLength 1 1 2 -mat 1 2 3 -dir 1 2 6 -doRayleigh

4.9.2.4. Step 4: EVT

In this walk-through we will give a detailed step-by-step configuration of the MPM EVT module.

Settings

Open Settings. Here we set the simulation time, the time step, and the grid resolution, among other pre-simulation decisions.

HydroUQ Settings panel where simulation time, time step, and grid resolution are configured.

Bodies

Geometry

  • Fluid geometry

Open Bodies / Fluid / Geometry. Here we set the geometry of the flume’s fluid. Note that it is simply a rectangular prism filling the primary flume basin.

Example of geometry fields for the flume, debris region, and structure location in the GI/SIM context.

Click Create Geometry. We will now add another fluid geometry to represent the fluid which begins initially in the vacuum chamber reservoir. Define a rectangular prism as shown below.

Geometry of the vacuum chamber fluid reservoir.
  • Debris geometry:

Open Bodies / Debris / Geometry. Here we set the debris properties, such as the number of debris, the size of the debris, and the spacing between the debris. Rotation is another option, though not used in this example. We’ve elected to use an 1 x 2 x 3 grid of debris (longitudinal axis parallel to long-axis of the flume) located in the upstream position from Goseberg et al. 2016.

HydroUQ Debris Geometry panel showing an upstream 1x2x3 array specification.

Material

  • Fluid material:

Open Bodies / Fluid / Material. Here we set the material properties of the fluid. You may choose to use a realistic bulk modulus value of 2.1 GPa for the water, or you may soften it to 0.21 GPa to accelerate the simulation and reduce numerical stiffness with fairly minimal changes in our final results.

HydroUQ Fluid Material panel for setting water material parameters.
  • Debris material:

Moving onto the creation of an ordered debris array, we set the debris properties in the Bodies / Debris / Material tab. We will assume debris are made of hollow HDPE plastic, reducing effective density from approximately 987 kg/m3 to 419 kg/m3, as in [Bonus2025].

HydroUQ Debris Material panel with HDPE properties.

Algorithm

Open Bodies / Fluid / Algorithm. Here we set the algorithm parameters for the simulation. This is an advanced feature of the MPM module, it is best not to alter it too much. We choose to apply F-Bar antilocking to aid in the pressure field’s accuracy on the fluid. The associated toggle must be checked, and the antilocking ratio set to 0.9, loosely. For full bulk modulus water, you may need to increase this value to alleviate numerical stiffness.

HydroUQ Algorithm panel with F-Bar anti-locking toggled on and tuned ratio.

In Bodies / Debris / Algorithm we set debris for compatibility with the fluid as follows: ASFLIP is turned on and F-Bar antilocking is turned off. We keep ASFLIP tuning values at their default of zero as we do not need advanced behavior in this example. Turning on ASFLIP is what allows us to apply friction to the debris particles as they are mobilized across the harbor floor.

HydroUQ Algorithm panel for debris compatibility with fluid.

Partitions:

Open Bodies / Fluid / Partitions. This is an advanced feature of the MPM module which allows us to partition material bodies across hardware devices to optimize simulations. These may be kept as their default values, which have already been set for compatibility on the remote HPC system.

HydroUQ Partitions panel for multi-GPU decomposition.

Next, Bodies / Debris / Partitions defines a partition where the debris may exist in our flume domain and defines the hardware device (i.e., GPU) that they will be simulated on. Keep this as the default unless you are an advanced user.

HydroUQ Partitions panel for multi-GPU decomposition.

Structure:

Finally, open Bodies / Structures. Uncheck the box that enables this body. We will not model the structure as a deformable MPM material body in this example, instead, we will approximate it as a rigid MPM boundary a few steps from now. After the MPM simulation we will map loads from the boundary to an OpenSees structure for structural analysis, see Steps 3 and 5 for configuration.

../../../../../_images/GUI_Bodies_Structure.png

Fig. 4.9.2.4.1 HydroUQ Bodies Structures GUI

Boundaries

  • Wave Flume boundary:

Open Boundaries / Flume Facility. We will set the flume boundary to be a rigid body, with a fixed separable velocity condition. Bathymetry joint points should be identical to the ones used in Bodies / Fluid / Geometry. We also set friction coefficients of 0.4 to replicate the experiments, which concerned HDPE plastic debris on rough plywood flooring.

HydroUQ boundary setup for the flume facility.
  • Wave Generator:

Open Boundaries / Wave Generator. We will use this boundary to define the front-wall of the fluid reservoir vacuum chamber by defining a rectangular prism, as shown below.

HydroUQ Wave Generator panel.
  • Rigid Structure:

Open Boundaries / Rigid Structure. This is where we will specify the structure as a boundary condition. By doing so, we can determine the exact loads on the rigid boundary grid-nodes, which automatically map to the model defined in the SIM and FEM tab in Steps 3 and 5 for potentially nonlinear UQ structural response analysis. Note that we elect to define a 2 x 5 array of structures to match one of the cases from Goseberg et al. 2016, but other arrangements are available. The front-row, central obstacle is the one which we will perform our structural analysis workflow on later.

HydroUQ Rigid Structure boundary panel for the structure.
  • Rigid Walls:

Open Boundaries / Rigid Walls. Set to encompass the flume domain.

HydroUQ Rigid Walls panel.

Sensors

  • Wave Gauges:

Open Sensors / Wave Gauges. Set the Use these sensor? box to True so that the simulation will output results for the instruments we set on this page.

Four wave gauges will be defined in the far-field by the vacuum chamber (WG1), mid-field near the harbor quay wall (WG2), above the harbor near the upstream debris (WG3), and amidst the scaled port obstacles (WG4).

Set the origins and dimensions of each wave gauge to encompass at least one grid-cell in each direction as in the table below. To match experimental conditions, we also apply a 30 Hz sampling rate to the wave gauges.

HydroUQ Wave-Gauge sensor configuration with sampling rate and gauge extents.

These wave gauges will read all numerical bodies (i.e. particles) within their defined regions at every sampling step and will report the highest elevation value (Position Y) of a contained body as the free-surface elevation at that gauge. The results are written into our sensor results files which we will later analyze.

  • Load Cells:

Open Sensors / Load Cells. Set the Use these sensor? box to True so that the simulation will output results for the instruments we set on this page. Two load cells are defined so that we may map loads onto two nodes of our OpenSees structural model which we defined in Steps 3 and 5. Output frequency is set to 120 Hz to improve upon experiments by capturing primary load phenomena. Note that the original experiments did not have structure mounted load cells, but rather 30 Hz accelerometers equipped on each debris which were used to infer partial structural loads.

HydroUQ Load-Cell sensor configuration at the structure boundary.

Outputs

Open Outputs. Here we set the non-physical output parameters for the simulation, e.g. attributes to save per frame and file extension types. The particle bodies’ output frequency is set to 2 Hz, meaning the simulation will output results every 0.5 seconds. This is to save disk space and reduce I/O load, but it may be increased if you wish to make animations (e.g., 10 - 30 Hz). Fill the rest of the data in the figure into your GUI to ensure all your outputs match this example. You may alter output attributes if you are an advanced user familiar with ClaymoreUW attributes and wish to perform more advanced analysis.

HydroUQ Outputs panel with file types and output frequency.

4.9.2.5. Step 5: FEM

This example insofar focused on hydrodynamic forces measured on rigid structures. To perform true structural response analysis, map recovered boundary loads to an OpenSees model in SIM and configure dynamic analysis here as in other HydroUQ tutorials.

Solver: OpenSees dynamic analysis. Check:

  • Integration step compatible with MPM sensor output interval.

  • Algorithm/convergence tolerances suitable for expected nonlinearity.

  • Damping model as needed (e.g., Rayleigh).

FEM panel with integration, algorithm, solver, and damping settings.

4.9.2.6. Step 6: EDP

Select Engineering Demand Parameters (EDPs) to summarize response:

  • Peak Floor Acceleration (PFA)

  • Root Mean Square Acceleration (RMSA)

  • Peak Floor Displacement (PFD)

  • Peak Interstory Drift (PID)

EDP panel with standard selections enabled.

Note that other quantities of interest (QoI) are theoretically obtainable from HydroUQ, if the custom EDP module is configured. E.g.:

  • Wave: max free-surface elevation η(t) at gauges.

  • Debris motion: longitudinal displacement (forward/back), lateral spreading angle, stack interaction metrics (contact counts/overturns).

  • Loads: obstacle force time histories (impact peaks, impulses).

4.9.2.7. Step 7: RV

Define distributions for structural RV:

Structural

  • w: Normal (mean 144, stdev 12)

RV panel listing weight (w) with Normal distributions and parameters.

For future UQ, consider:

  • Structure: stiffness variance, eccentricity, multi-story floor variance

  • Debris: mass variance, friction coefficients (debris-apron, debris-debris).

  • Wave: amplitude/period tolerance relative to vacuum-maker target.

  • Obstacles: small misalignment/placement tolerance.

4.9.3. Simulation

This case was executed on TACC Stampede3 using 2x NVIDIA H100 GPUs on a single node (queue: h100). Simulated physical time: 15 seconds. Wall time: 90 minutes (allow ample Max Run Time in job settings).

Important

Provide generous Max Run Time, on the order of 60 to 90 minutes, to complete the run and post-processing before scheduler limits are reached.

Warning

Keep sensor regions, counts, sampling rates, and output frequencies reasonable—excess I/O can dominate runtime.

Outputs

  • Sensor CSVs (gauges, debris CoM, loads) at your chosen rates.

  • Particle/field snapshots (e.g., BGEO/VTK) for visualization/diagnostics.

4.9.4. Analysis

Accessing Results and Simulation Files

When the simulation job has been completed, the results and simulation files will be available on the remote system for retrieval or remote post-processing.

Retrieving the results.zip, templatedir.zip, workdir.tar.gz, and MPM folders will allow you to analyze all of the simulation output (e.g., hydrodynamic, structural, uncertainty quantification).

  • results.zip: Contains primary uncertainty quantification output and MPM sensor files. This will be the primary place for analysis.

  • templatedir.zip: Contains template and workflow files for the job. This is an important resource for debugging your workflows.

  • workdir.tar.gz: Contains the working directories in which each unique simulation was ran. This is where structural response uncertainty is expanded on typically.

  • MPM: Contains all the MPM simulation files. Includes the raw particle output frames which can be used to create animations or to perform more advanced post-processing.

The most straightforward way to retrieve the most important files, results.zip and templatedir.zip, is by clicking the GET From DesignSafe button in HydroUQ.

../../../../../_images/getFromDesignSafe1.png

Fig. 4.9.4.1 HydroUQ GET From DesignSafe button, which opens up a jobs table of all your remote simulations.

Then, right-click on your job (if it is finished) and select Retrieve Data. This will download results.zip and templatedir.zip.

../../../../../_images/retrieveData1.png

Fig. 4.9.4.2 Locating the Retrieve Data button in the HydroUQ remote jobs table.

HydroUQ will then automatically unzip them into results and templatedir, which will be located in {your_path}/HydroUQ/RemoteWorkDir/tmp.SimCenter. On most systems, this will be ~/Documents/HydroUQ/RemoteWorkDir/tmp.SimCenter, but you can check by clicking on Files / Preferences on the upper-left corner of HydroUQ.

To retrieve workdir.tar.gz and MPM, there are two approaches:

  1. You can right-click on your job within HydroUQ and select Open Job Folder to be taken directly to the Design Safe web-page displaying all remote files.

../../../../../_images/openJobFolder1.png

Fig. 4.9.4.3 Locating the Open Job Folder button in the HydroUQ remote jobs table.

  1. You can manually navigate to the designsafe-ci.org website. For the latter, login and go to Upper-right Drop-down / Job Status.

../../../../../_images/DSToolsAndAppsJobsStatus1.png

Fig. 4.9.4.4 Locating the job files on DesignSafe

Check if the job has finished in the central vertical drawer by refreshing the page. If it has, click View Details.

../../../../../_images/DSToolsAndAppsJobsStatusFinished1.png

Fig. 4.9.4.5 Job status is finished on DesignSafe

Once the job is finished, the output files should be available in the directory which the analysis results were sent to

Find the files by clicking View Output.

../../../../../_images/DSToolsAndAppsJobsStatusViewFiles1.png

Fig. 4.9.4.6 Viewing the job files on DesignSafe

After navigating to your job folder by one of two ways, it is time to move files for processing. Move important files to somewhere in My Data/ for easier processing. Use the extractor tool available on DesignSafe to unzip the results.zip, workdir.tar.gz, and templatedir.zip folders natively on DesignSafe.

../../../../../_images/extractonDS1.png

Fig. 4.9.4.7 Extracting the results.zip folder on DesignSafe

Alternatively, you may directly download the zipped folders to your PC, which will require you to use the DesignSafe zip tool on the MPM folder prior.

../../../../../_images/downloadResults1.png

Fig. 4.9.4.8 Download button on DesignSafe shown in red

Locate the downloaded zip folders and extract them somewhere convenient. The HydroUQ local or remote work directory on your computer is a good option.

Warning

Files in the HydroUQ local and remote working directories may be erased if another simulation is set up in HydroUQ, so keep a backup if you wish to maintain the files.

Particle geometry files often have a BGEO extension and are located in the MPM folder. Open with Side FX Houdini Apprentice (free to use) to look at MPM results in high-detail, or use the PartIO library.

HydroUQ’s sensor/probe/instrument output is available in {your_path}/HydroUQ/RemoteWorkDir/tmp.SimCenter/results/ as CSV files. You may process these files as you wish, most opt to use custom Python scripts or Excel due to their simplicity.

Note

For convenience, HydroUQ also includes basic plotting of all sensors files in the EVT / Results tab. Click Post-Process Sensors, configure the drop-down boxes for the sensor you wish to view, and then click Plot.

Plotting the wave gauges shows the development of a tsunami-like wave as it propagates from the vacuum-chamber over the harbor bathymetry.

Simulated free-surface elevations at three wave gauges in MPM.

Fig. 4.9.4.9 Simulated free-surface elevations at three wave gauges in MPM.

Load-cell data shows an initially high peak force from debris impact, followed by some damming forces and eventually just hydrodynamic drag.

Simulated load-cell forces in MPM. These are later mapped onto an OpenSees structure for dynamic response analysis.

Fig. 4.9.4.10 Simulated load-cell forces in MPM. These are later mapped onto an OpenSees structure for dynamic response analysis.

While this example concerned a quick-to-run simulation with around a million particles at a grid-resolution of 0.1 meters, higher resolution cases with 100 million particles and 0.01 meter cells are possible on remote HPC systems, including Stampede3 and Lonestar6. Below we show simulation results at these specifications from [Bonus2025] compared against experiments to demonstrate the benefit of increased resolution. These simulations took 24 hours to complete.

Note

This HydroUQ example runs the MPM configuration natively. Companion SPH and FVM results can be imported (optional) for side-by-side plots in the Analysis section to mirror the comparative study. Acquire said data from: PRJ-5846.

Wave generation (η at gauges)

Free-surface elevation at multiple gauges; MPM vs SPH vs FVM vs experiments.

Debris kinematics

Longitudinal displacement statistics of debris; MPM vs SPH vs FVM vs experiments.
Lateral spreading angle statistics; MPM vs SPH vs FVM vs experiments.

Obstacle loading

Obstacle force time histories comparisons; MPM vs SPH vs FVM vs experiments.

Structural Analysis

Returning to our primary HydroUQ workflow, which concerns uncertainty in structural response, we may now view the final results in the RES tab. Clicking Summary on the top-bar, a statistical summary of results is shown below:

RES panel summary of structural response statistics.

Clicking Data Values on the top-bar shows detailed histograms, cumulative distribution functions, and scatter plots relating the dependent and independent variables:

Note

In the Data Values tab, left- and right-click column headers to change plot axes; selecting a single column with both clicks displays frequency and CDF plots.

RES panel histogram of dependent variable.
RES panel cumulative distribution function of dependent variable.
RES panel scatter plot of dependent vs independent variable.

Note

Use consistent Froude similitude scaling when comparing numerical simulations, experiments, and full-scale scenarios. For cross-method comparisons, adopt identical debris footprints, friction models, probe placement, and other pertinent parameters to reduce bias.

For more advanced analysis, export results as a CSV file by clicking Save Table on the upper-right of the application window. This will save the independent and dependent variable data. I.e., the Random Variables you defined and the Engineering Demand Parameters determined from the structural response per each simulation.

To save your simulation configuration with results included, click File / Save As and specify a location for the HydroUQ JSON input file to be recorded to. You may then reload the file at a later time by clicking File / Open. You may also send it to others by email or place it in an online repository for research reproducibility. This example’s input file is viewable at Reproducibility.

To directly share your simulation job and results in HydroUQ with other DesignSafe users, click GET from DesignSafe. Then, navigate to the row with your job and right-click it. Select Share Job. You may then enter the DesignSafe username or usernames (comma-separated) to share with.

Important

Sharing a job requires that the job was initially ran with an Archive System ID (listed in the GET from DesignSafe table’s columns) that is not designsafe.storage.default. Any other Archive System ID allows for sharing with DesignSafe members on the associated project. See Jobs for more details.

4.9.5. Conclusions

This WU TWB digital flume example shows how HydroUQ can stage a state-of-the-art MPM debris simulation and compare against SPH and FVM counterparts for a 1:40 scaled port setting. Across wave generation, debris motion/spreading, stacking, and obstacle impacts, each method exhibits distinct strengths. The shared benchmark and open-sourced digital twins enable transparent cross-interrogation and lay groundwork for statistical synthesis across methods and experiments.

4.9.6. References

[Goseberg2016]

Goseberg, N., Stolle, J., Nistor, I., & Shibayama, T. (2016). Experimental analysis of debris motion due the obstruction from fixed obstacles in tsunami-like flow conditions. Coastal Engineering, 118, 35-49. https://doi.org/https://doi.org/10.1016/j.coastaleng.2016.08.012

[Goseberg2023]

Goseberg Nils and Stolle, J. and N. I. and S. T. and S. F. and K. C. (2023). Experimental dataset describing the debris motion due to the obstruction from fixed obstacles in tsunami-like flow conditions. https://doi.org/10.24355/dbbs.084-202303091524-0

[Bonus2023Dissertation]

Bonus, Justin (2023). “Evaluation of Fluid-Driven Debris Impacts in a High-Performance Multi-GPU Material Point Method.” PhD thesis. University of Washington, Seattle.

[Bonus2025] (1,2,3)

Justin Bonus, Felix Spröer, Andrew Winter, Pedro Arduino, Clemens Krautwald, Michael Motley, Nils Goseberg (2025). “Tsunami Debris Motion and Loads in a Scaled Port Setting: Comparative Analysis of Three State-of-the-Art Methods Against Experiments.” Coastal Engineering. Volume 197. https://doi.org/10.1016/j.coastaleng.2024.104672.

[Bonus2025ClaymoreUW]

Bonus, J., & Arduino, P. (2025). ClaymoreUW. Zenodo. https://doi.org/10.5281/zenodo.15128706

4.9.7. Reproducibility

  • Random seed(s): 1 (if using Forward samples)

  • App version: HydroUQ v4.2.0 (or current)

  • Solvers: - MPM: ClaymoreUW (multi-GPU) - SPH: DualSPHysics (GPU) — imported for comparison - FVM: Simcenter STAR-CCM+ (multi-CPU/GPU) — imported for comparison

  • Hardware (example): TACC Stampede3, 2x H100 (single node)

  • Simulated time: 15 s; Wall time: 1 h 30 m

  • Sensors: gauges (η), debris CoM, obstacle load-cells; outputs at moderate rates

  • Input: The HydroUQ input file is as follows: input.json , is used:

Click to expand the HydroUQ input file used for this example
   1{
   2    "Applications": {
   3        "EDP": {
   4            "Application": "StandardEDP",
   5            "ApplicationData": {
   6            }
   7        },
   8        "Events": [
   9            {
  10                "Application": "MPM",
  11                "ApplicationData": {
  12                },
  13                "EventClassification": "Hydro",
  14                "defaultMaxRunTime": "1440",
  15                "driverFile": "sc_driver",
  16                "inputFile": "scInput.json",
  17                "maxRunTime": "120",
  18                "programFile": "osu_lwf",
  19                "publicDirectory": "./"
  20            }
  21        ],
  22        "Modeling": {
  23            "Application": "MDOF_BuildingModel",
  24            "ApplicationData": {
  25            }
  26        },
  27        "Simulation": {
  28            "Application": "OpenSees-Simulation",
  29            "ApplicationData": {
  30            }
  31        },
  32        "UQ": {
  33            "Application": "Dakota-UQ",
  34            "ApplicationData": {
  35            }
  36        }
  37    },
  38    "DefaultValues": {
  39        "driverFile": "driver",
  40        "edpFiles": [
  41            "EDP.json"
  42        ],
  43        "filenameAIM": "AIM.json",
  44        "filenameDL": "BIM.json",
  45        "filenameEDP": "EDP.json",
  46        "filenameEVENT": "EVENT.json",
  47        "filenameSAM": "SAM.json",
  48        "filenameSIM": "SIM.json",
  49        "rvFiles": [
  50            "AIM.json",
  51            "SAM.json",
  52            "EVENT.json",
  53            "SIM.json"
  54        ],
  55        "workflowInput": "scInput.json",
  56        "workflowOutput": "EDP.json"
  57    },
  58    "EDP": {
  59        "type": "StandardEDP"
  60    },
  61    "Events": [
  62        {
  63            "Application": "MPM",
  64            "EventClassification": "Hydro",
  65            "example": "WU TWB",
  66            "bodies": [
  67                {
  68                    "algorithm": {
  69                        "ASFLIP_alpha": 0,
  70                        "ASFLIP_beta_max": 0,
  71                        "ASFLIP_beta_min": 0,
  72                        "FBAR_fused_kernel": true,
  73                        "FBAR_psi": 0.9,
  74                        "ppc": 8,
  75                        "type": "particles",
  76                        "use_ASFLIP": false,
  77                        "use_FBAR": true
  78                    },
  79                    "geometry": [
  80                        {
  81                            "apply_array": false,
  82                            "apply_rotation": false,
  83                            "body_preset": "Fluid",
  84                            "facility": "Waseda University's Tsunami Wave Basin (WU TWB)",
  85                            "facility_dimensions": [
  86                                9,
  87                                1,
  88                                4
  89                            ],
  90                            "fill_flume_upto_SWL": true,
  91                            "object": "Box",
  92                            "offset": [
  93                                0,
  94                                0,
  95                                0
  96                            ],
  97                            "operation": "add",
  98                            "span": [
  99                                4.45,
 100                                0.23,
 101                                4
 102                            ],
 103                            "standing_water_level": 0.23,
 104                            "track_particle_id": [
 105                                "0"
 106                            ],
 107                            "use_custom_bathymetry": false
 108                        },
 109                        {
 110                            "operation": "add",
 111                            "object": "Box",
 112                            "apply_array": false,
 113                            "apply_rotation": false,
 114                            "body_preset": "Fluid",
 115                            "facility": "Waseda University's Tsunami Wave Basin (WU TWB)",
 116                            "facility_dimensions": [
 117                                9,
 118                                1,
 119                                4
 120                            ],
 121                            "offset": [
 122                                0,
 123                                0.23,
 124                                0
 125                            ],
 126                            "span": [
 127                                0.5,
 128                                0.67,
 129                                4.0
 130                            ],
 131                            "spacing": [
 132                                0.0,
 133                                0.0,
 134                                0.0
 135                            ],
 136                            "array": [
 137                                1,
 138                                1,
 139                                1
 140                            ],
 141                            "rotate": [
 142                                0,
 143                                0,
 144                                0
 145                            ],
 146                            "fulcrum": [
 147                                0,
 148                                0,
 149                                0
 150                            ],
 151                            "track_particle_id": [
 152                                "0"
 153                            ],
 154                            "fill_flume_upto_SWL": false,
 155                            "use_custom_bathymetry": false,
 156                            "standing_water_level": 0.9
 157                        }
 158                    ],
 159                    "gpu": 0,
 160                    "material": {
 161                        "CFL": 0.5,
 162                        "bulk_modulus": 21000000,
 163                        "constitutive": "JFluid",
 164                        "gamma": 7.15,
 165                        "material_preset": "Water (Fresh)",
 166                        "rho": 1000,
 167                        "viscosity": 0.001
 168                    },
 169                    "model": 0,
 170                    "name": "fluid",
 171                    "output_attribs": [
 172                        "ID",
 173                        "Pressure"
 174                    ],
 175                    "partition": [
 176                        {
 177                            "gpu": 0,
 178                            "model": 0,
 179                            "partition_end": [
 180                                9,
 181                                0.23,
 182                                4
 183                            ],
 184                            "partition_start": [
 185                                0,
 186                                0,
 187                                0
 188                            ]
 189                        },
 190                        {
 191                            "gpu": 1,
 192                            "model": 0,
 193                            "partition_end": [
 194                                0.5,
 195                                0.9,
 196                                4
 197                            ],
 198                            "partition_start": [
 199                                0,
 200                                0.23,
 201                                0
 202                            ]
 203                        },
 204                        {
 205                            "gpu": 2,
 206                            "model": 0,
 207                            "partition_end": [
 208                                9,
 209                                0.23,
 210                                8
 211                            ],
 212                            "partition_start": [
 213                                0,
 214                                0,
 215                                4
 216                            ]
 217                        }
 218                    ],
 219                    "partition_end": [
 220                        9,
 221                        0.23,
 222                        4
 223                    ],
 224                    "partition_start": [
 225                        0,
 226                        0,
 227                        0
 228                    ],
 229                    "target_attribs": [
 230                        "Position_Y"
 231                    ],
 232                    "track_attribs": [
 233                        "Position_X",
 234                        "Position_Z",
 235                        "Pressure"
 236                    ],
 237                    "track_particle_id": [
 238                        0
 239                    ],
 240                    "type": "particles",
 241                    "velocity": [
 242                        0,
 243                        0,
 244                        0
 245                    ]
 246                },
 247                {
 248                    "algorithm": {
 249                        "ASFLIP_alpha": 0,
 250                        "ASFLIP_beta_max": 0,
 251                        "ASFLIP_beta_min": 0,
 252                        "FBAR_fused_kernel": true,
 253                        "FBAR_psi": 0,
 254                        "ppc": 8,
 255                        "type": "particles",
 256                        "use_ASFLIP": true,
 257                        "use_FBAR": false
 258                    },
 259                    "geometry": [
 260                        {
 261                            "apply_array": true,
 262                            "apply_rotation": false,
 263                            "array": [
 264                                1,
 265                                2,
 266                                3
 267                            ],
 268                            "body_preset": "Debris",
 269                            "facility": "Waseda University's Tsunami Wave Basin (WU TWB)",
 270                            "facility_dimensions": [
 271                                9,
 272                                1,
 273                                4
 274                            ],
 275                            "fulcrum": [
 276                                0,
 277                                0,
 278                                0
 279                            ],
 280                            "object": "Box",
 281                            "offset": [
 282                                4.65,
 283                                0.255,
 284                                1.715
 285                            ],
 286                            "operation": "add",
 287                            "rotate": [
 288                                0,
 289                                0,
 290                                0
 291                            ],
 292                            "spacing": [
 293                                0.12,
 294                                0.12,
 295                                0.21
 296                            ],
 297                            "span": [
 298                                0.06,
 299                                0.06,
 300                                0.15
 301                            ],
 302                            "track_particle_id": [
 303                                "0"
 304                            ]
 305                        }
 306                    ],
 307                    "gpu": 0,
 308                    "material": {
 309                        "CFL": 0.5,
 310                        "constitutive": "FixedCorotated",
 311                        "material_preset": "Plastic",
 312                        "poisson_ratio": 0.3,
 313                        "rho": 981,
 314                        "youngs_modulus": 10000000
 315                    },
 316                    "model": 1,
 317                    "name": "debris",
 318                    "output_attribs": [
 319                        "ID",
 320                        "Pressure",
 321                        "Velocity_X",
 322                        "Velocity_Y",
 323                        "Velocity_Z"
 324                    ],
 325                    "partition": [
 326                        {
 327                            "gpu": 0,
 328                            "model": 1,
 329                            "partition_end": [
 330                                9,
 331                                1,
 332                                4
 333                            ],
 334                            "partition_start": [
 335                                0,
 336                                0,
 337                                0
 338                            ]
 339                        }
 340                    ],
 341                    "partition_end": [
 342                        9,
 343                        1,
 344                        4
 345                    ],
 346                    "partition_start": [
 347                        0,
 348                        0,
 349                        0
 350                    ],
 351                    "target_attribs": [
 352                        "Position_Y"
 353                    ],
 354                    "track_attribs": [
 355                        "Position_X",
 356                        "Position_Z",
 357                        "Pressure"
 358                    ],
 359                    "track_particle_id": [
 360                        0
 361                    ],
 362                    "type": "particles",
 363                    "velocity": [
 364                        0,
 365                        0,
 366                        0
 367                    ]
 368                },
 369                {
 370                    "algorithm": {
 371                        "ASFLIP_alpha": 0,
 372                        "ASFLIP_beta_max": 0,
 373                        "ASFLIP_beta_min": 0,
 374                        "FBAR_fused_kernel": true,
 375                        "FBAR_psi": 0.9,
 376                        "ppc": 8,
 377                        "type": "particles",
 378                        "use_ASFLIP": false,
 379                        "use_FBAR": true
 380                    },
 381                    "geometry": [
 382                        {
 383                            "apply_array": false,
 384                            "apply_rotation": false,
 385                            "body_preset": "Fluid",
 386                            "facility": "Waseda University's Tsunami Wave Basin (WU TWB)",
 387                            "facility_dimensions": [
 388                                9,
 389                                1,
 390                                4
 391                            ],
 392                            "fill_flume_upto_SWL": true,
 393                            "object": "Box",
 394                            "offset": [
 395                                0,
 396                                0,
 397                                0
 398                            ],
 399                            "operation": "add",
 400                            "span": [
 401                                4.45,
 402                                0.23,
 403                                4
 404                            ],
 405                            "standing_water_level": 0.23,
 406                            "track_particle_id": [
 407                                "0"
 408                            ],
 409                            "use_custom_bathymetry": false
 410                        },
 411                        {
 412                            "operation": "add",
 413                            "object": "Box",
 414                            "apply_array": false,
 415                            "apply_rotation": false,
 416                            "body_preset": "Fluid",
 417                            "facility": "Waseda University's Tsunami Wave Basin (WU TWB)",
 418                            "facility_dimensions": [
 419                                9,
 420                                1,
 421                                4
 422                            ],
 423                            "offset": [
 424                                0,
 425                                0.23,
 426                                0
 427                            ],
 428                            "span": [
 429                                0.5,
 430                                0.67,
 431                                4.0
 432                            ],
 433                            "spacing": [
 434                                0.0,
 435                                0.0,
 436                                0.0
 437                            ],
 438                            "array": [
 439                                1,
 440                                1,
 441                                1
 442                            ],
 443                            "rotate": [
 444                                0,
 445                                0,
 446                                0
 447                            ],
 448                            "fulcrum": [
 449                                0,
 450                                0,
 451                                0
 452                            ],
 453                            "track_particle_id": [
 454                                "0"
 455                            ],
 456                            "fill_flume_upto_SWL": false,
 457                            "use_custom_bathymetry": false,
 458                            "standing_water_level": 0.9
 459                        }
 460                    ],
 461                    "gpu": 1,
 462                    "material": {
 463                        "CFL": 0.5,
 464                        "bulk_modulus": 21000000,
 465                        "constitutive": "JFluid",
 466                        "gamma": 7.15,
 467                        "material_preset": "Water (Fresh)",
 468                        "rho": 1000,
 469                        "viscosity": 0.001
 470                    },
 471                    "model": 0,
 472                    "name": "fluid",
 473                    "output_attribs": [
 474                        "ID",
 475                        "Pressure"
 476                    ],
 477                    "partition": [
 478                        {
 479                            "gpu": 0,
 480                            "model": 0,
 481                            "partition_end": [
 482                                9,
 483                                0.23,
 484                                4
 485                            ],
 486                            "partition_start": [
 487                                0,
 488                                0,
 489                                0
 490                            ]
 491                        },
 492                        {
 493                            "gpu": 1,
 494                            "model": 0,
 495                            "partition_end": [
 496                                0.5,
 497                                0.9,
 498                                4
 499                            ],
 500                            "partition_start": [
 501                                0,
 502                                0.23,
 503                                0
 504                            ]
 505                        },
 506                        {
 507                            "gpu": 2,
 508                            "model": 0,
 509                            "partition_end": [
 510                                9,
 511                                0.23,
 512                                8
 513                            ],
 514                            "partition_start": [
 515                                0,
 516                                0,
 517                                4
 518                            ]
 519                        }
 520                    ],
 521                    "partition_end": [
 522                        0.5,
 523                        0.9,
 524                        4.0
 525                    ],
 526                    "partition_start": [
 527                        0,
 528                        0,
 529                        0
 530                    ],
 531                    "target_attribs": [
 532                        "Position_Y"
 533                    ],
 534                    "track_attribs": [
 535                        "Position_X",
 536                        "Position_Z",
 537                        "Pressure"
 538                    ],
 539                    "track_particle_id": [
 540                        0
 541                    ],
 542                    "type": "particles",
 543                    "velocity": [
 544                        0,
 545                        0,
 546                        0
 547                    ]
 548                },
 549                {
 550                    "algorithm": {
 551                        "ASFLIP_alpha": 0,
 552                        "ASFLIP_beta_max": 0,
 553                        "ASFLIP_beta_min": 0,
 554                        "FBAR_fused_kernel": true,
 555                        "FBAR_psi": 0.9,
 556                        "ppc": 8,
 557                        "type": "particles",
 558                        "use_ASFLIP": false,
 559                        "use_FBAR": true
 560                    },
 561                    "geometry": [
 562                        {
 563                            "apply_array": false,
 564                            "apply_rotation": false,
 565                            "body_preset": "Fluid",
 566                            "facility": "Waseda University's Tsunami Wave Basin (WU TWB)",
 567                            "facility_dimensions": [
 568                                9,
 569                                1,
 570                                4
 571                            ],
 572                            "fill_flume_upto_SWL": true,
 573                            "object": "Box",
 574                            "offset": [
 575                                0,
 576                                0,
 577                                0
 578                            ],
 579                            "operation": "add",
 580                            "span": [
 581                                4.45,
 582                                0.23,
 583                                4
 584                            ],
 585                            "standing_water_level": 0.23,
 586                            "track_particle_id": [
 587                                "0"
 588                            ],
 589                            "use_custom_bathymetry": false
 590                        },
 591                        {
 592                            "operation": "add",
 593                            "object": "Box",
 594                            "apply_array": false,
 595                            "apply_rotation": false,
 596                            "body_preset": "Fluid",
 597                            "facility": "Waseda University's Tsunami Wave Basin (WU TWB)",
 598                            "facility_dimensions": [
 599                                9,
 600                                1,
 601                                4
 602                            ],
 603                            "offset": [
 604                                0,
 605                                0.23,
 606                                0
 607                            ],
 608                            "span": [
 609                                0.5,
 610                                0.67,
 611                                4.0
 612                            ],
 613                            "spacing": [
 614                                0.0,
 615                                0.0,
 616                                0.0
 617                            ],
 618                            "array": [
 619                                1,
 620                                1,
 621                                1
 622                            ],
 623                            "rotate": [
 624                                0,
 625                                0,
 626                                0
 627                            ],
 628                            "fulcrum": [
 629                                0,
 630                                0,
 631                                0
 632                            ],
 633                            "track_particle_id": [
 634                                "0"
 635                            ],
 636                            "fill_flume_upto_SWL": false,
 637                            "use_custom_bathymetry": false,
 638                            "standing_water_level": 0.9
 639                        }
 640                    ],
 641                    "gpu": 2,
 642                    "material": {
 643                        "CFL": 0.5,
 644                        "bulk_modulus": 21000000,
 645                        "constitutive": "JFluid",
 646                        "gamma": 7.15,
 647                        "material_preset": "Water (Fresh)",
 648                        "rho": 1000,
 649                        "viscosity": 0.001
 650                    },
 651                    "model": 0,
 652                    "name": "fluid",
 653                    "output_attribs": [
 654                        "ID",
 655                        "Pressure"
 656                    ],
 657                    "partition": [
 658                        {
 659                            "gpu": 0,
 660                            "model": 0,
 661                            "partition_end": [
 662                                9,
 663                                0.23,
 664                                4
 665                            ],
 666                            "partition_start": [
 667                                0,
 668                                0,
 669                                0
 670                            ]
 671                        },
 672                        {
 673                            "gpu": 1,
 674                            "model": 0,
 675                            "partition_end": [
 676                                0.5,
 677                                0.9,
 678                                4
 679                            ],
 680                            "partition_start": [
 681                                0,
 682                                0.23,
 683                                0
 684                            ]
 685                        },
 686                        {
 687                            "gpu": 2,
 688                            "model": 0,
 689                            "partition_end": [
 690                                9,
 691                                0.23,
 692                                8
 693                            ],
 694                            "partition_start": [
 695                                0,
 696                                0,
 697                                4
 698                            ]
 699                        }
 700                    ],
 701                    "partition_end": [
 702                        9.0,
 703                        0.23,
 704                        8
 705                    ],
 706                    "partition_start": [
 707                        0,
 708                        0,
 709                        4
 710                    ],
 711                    "target_attribs": [
 712                        "Position_Y"
 713                    ],
 714                    "track_attribs": [
 715                        "Position_X",
 716                        "Position_Z",
 717                        "Pressure"
 718                    ],
 719                    "track_particle_id": [
 720                        0
 721                    ],
 722                    "type": "particles",
 723                    "velocity": [
 724                        0,
 725                        0,
 726                        0
 727                    ]
 728                }
 729            ],
 730            "boundaries": [
 731                {
 732                    "contact": "Separable",
 733                    "domain_end": [
 734                        9,
 735                        1,
 736                        4
 737                    ],
 738                    "domain_start": [
 739                        0,
 740                        0,
 741                        0
 742                    ],
 743                    "friction_dynamic": 0.4,
 744                    "friction_static": 0.4,
 745                    "object": "TOKYO Harbor",
 746                    "use_custom_bathymetry": false
 747                },
 748                {
 749                    "contact": "Separable",
 750                    "domain_end": [
 751                        0.56,
 752                        1,
 753                        4
 754                    ],
 755                    "domain_start": [
 756                        0.5,
 757                        0.15,
 758                        0
 759                    ],
 760                    "friction_dynamic": 0,
 761                    "friction_static": 0,
 762                    "object": "Box"
 763                },
 764                {
 765                    "array": [
 766                        2,
 767                        1,
 768                        5
 769                    ],
 770                    "contact": "Separable",
 771                    "domain_end": [
 772                        5.21,
 773                        0.5549999999999999,
 774                        1.4000000000000001
 775                    ],
 776                    "domain_start": [
 777                        5.11,
 778                        0.255,
 779                        1.3
 780                    ],
 781                    "friction_dynamic": 0,
 782                    "friction_static": 0,
 783                    "object": "Box",
 784                    "spacing": [
 785                        0.45,
 786                        0.4,
 787                        0.325
 788                    ]
 789                },
 790                {
 791                    "contact": "Separable",
 792                    "domain_end": [
 793                        9,
 794                        1,
 795                        4
 796                    ],
 797                    "domain_start": [
 798                        0,
 799                        0,
 800                        0
 801                    ],
 802                    "friction_dynamic": 0,
 803                    "friction_static": 0,
 804                    "object": "Walls"
 805                }
 806            ],
 807            "computer": {
 808                "hpc": "TACC - UT Austin - Lonestar6",
 809                "hpc_card_architecture": "Ampere",
 810                "hpc_card_brand": "NVIDIA",
 811                "hpc_card_compute_capability": 80,
 812                "hpc_card_global_memory": 40,
 813                "hpc_card_name": "A100",
 814                "hpc_queue": "gpu-a100",
 815                "models_per_gpu": 3,
 816                "num_gpus": 3
 817            },
 818            "grid-sensors": [
 819                {
 820                    "attribute": "Force",
 821                    "direction": "X+",
 822                    "domain_end": [
 823                        5.14,
 824                        0.405,
 825                        2.05
 826                    ],
 827                    "domain_start": [
 828                        5.11,
 829                        0.24,
 830                        1.95
 831                    ],
 832                    "name": "LoadCell1",
 833                    "operation": "Sum",
 834                    "output_frequency": 120,
 835                    "preset": "Load-Cells",
 836                    "summary": [
 837                        [
 838                            "LoadCell1",
 839                            5.11,
 840                            0.24,
 841                            1.95,
 842                            0.03,
 843                            0.165,
 844                            0.1
 845                        ],
 846                        [
 847                            "LoadCell2",
 848                            5.11,
 849                            0.405,
 850                            1.95,
 851                            0.03,
 852                            0.15,
 853                            0.1
 854                        ]
 855                    ],
 856                    "toggle": true,
 857                    "type": "grid"
 858                },
 859                {
 860                    "attribute": "Force",
 861                    "direction": "X+",
 862                    "domain_end": [
 863                        5.14,
 864                        0.555,
 865                        2.05
 866                    ],
 867                    "domain_start": [
 868                        5.11,
 869                        0.405,
 870                        1.95
 871                    ],
 872                    "name": "LoadCell2",
 873                    "operation": "Sum",
 874                    "output_frequency": 120,
 875                    "preset": "Load-Cells",
 876                    "summary": [
 877                        [
 878                            "LoadCell1",
 879                            5.11,
 880                            0.24,
 881                            1.95,
 882                            0.03,
 883                            0.165,
 884                            0.1
 885                        ],
 886                        [
 887                            "LoadCell2",
 888                            5.11,
 889                            0.405,
 890                            1.95,
 891                            0.03,
 892                            0.15,
 893                            0.1
 894                        ]
 895                    ],
 896                    "toggle": true,
 897                    "type": "grid"
 898                }
 899            ],
 900            "outputs": {
 901                "bodies_output_freq": 2,
 902                "bodies_save_suffix": "BGEO",
 903                "boundaries_output_freq": 30,
 904                "boundaries_save_suffix": "OBJ",
 905                "checkpoints_output_freq": 1,
 906                "checkpoints_save_suffix": "BGEO",
 907                "energies_output_freq": 30,
 908                "energies_save_suffix": "CSV",
 909                "output_attribs": [
 910                    [
 911                        "ID",
 912                        "Pressure"
 913                    ],
 914                    [
 915                        "ID",
 916                        "Pressure",
 917                        "Velocity_X",
 918                        "Velocity_Y",
 919                        "Velocity_Z"
 920                    ],
 921                    [
 922                        "ID",
 923                        "Pressure",
 924                        "VonMisesStress",
 925                        "DefGrad_Invariant2",
 926                        "DefGrad_Invariant3"
 927                    ]
 928                ],
 929                "particles_output_exterior_only": false,
 930                "sensors_save_suffix": "CSV",
 931                "useKineticEnergy": false,
 932                "usePotentialEnergy": false,
 933                "useStrainEnergy": false
 934            },
 935            "particle-sensors": [
 936                {
 937                    "attribute": "Elevation",
 938                    "direction": "N/A",
 939                    "domain_end": [
 940                        2.025,
 941                        1,
 942                        0.25
 943                    ],
 944                    "domain_start": [
 945                        2,
 946                        0,
 947                        0.225
 948                    ],
 949                    "name": "WaveGauge1",
 950                    "operation": "Max",
 951                    "output_frequency": 30,
 952                    "preset": "Wave-Gauges",
 953                    "summary": [
 954                        [
 955                            "WaveGauge1",
 956                            2,
 957                            0,
 958                            0.225,
 959                            0.025,
 960                            1,
 961                            0.025
 962                        ],
 963                        [
 964                            "WaveGauge2",
 965                            4,
 966                            0,
 967                            0.225,
 968                            0.025,
 969                            1,
 970                            0.025
 971                        ],
 972                        [
 973                            "WaveGauge3",
 974                            4.5,
 975                            0,
 976                            0.225,
 977                            0.025,
 978                            1,
 979                            0.025
 980                        ],
 981                        [
 982                            "WaveGauge4",
 983                            5.5,
 984                            0,
 985                            0.225,
 986                            0.025,
 987                            1,
 988                            0.025
 989                        ]
 990                    ],
 991                    "toggle": true,
 992                    "type": "particles"
 993                },
 994                {
 995                    "attribute": "Elevation",
 996                    "direction": "N/A",
 997                    "domain_end": [
 998                        4.025,
 999                        1,
1000                        0.25
1001                    ],
1002                    "domain_start": [
1003                        4,
1004                        0,
1005                        0.225
1006                    ],
1007                    "name": "WaveGauge2",
1008                    "operation": "Max",
1009                    "output_frequency": 30,
1010                    "preset": "Wave-Gauges",
1011                    "summary": [
1012                        [
1013                            "WaveGauge1",
1014                            2,
1015                            0,
1016                            0.225,
1017                            0.025,
1018                            1,
1019                            0.025
1020                        ],
1021                        [
1022                            "WaveGauge2",
1023                            4,
1024                            0,
1025                            0.225,
1026                            0.025,
1027                            1,
1028                            0.025
1029                        ],
1030                        [
1031                            "WaveGauge3",
1032                            4.5,
1033                            0,
1034                            0.225,
1035                            0.025,
1036                            1,
1037                            0.025
1038                        ],
1039                        [
1040                            "WaveGauge4",
1041                            5.5,
1042                            0,
1043                            0.225,
1044                            0.025,
1045                            1,
1046                            0.025
1047                        ]
1048                    ],
1049                    "toggle": true,
1050                    "type": "particles"
1051                },
1052                {
1053                    "attribute": "Elevation",
1054                    "direction": "N/A",
1055                    "domain_end": [
1056                        4.525,
1057                        1,
1058                        0.25
1059                    ],
1060                    "domain_start": [
1061                        4.5,
1062                        0,
1063                        0.225
1064                    ],
1065                    "name": "WaveGauge3",
1066                    "operation": "Max",
1067                    "output_frequency": 30,
1068                    "preset": "Wave-Gauges",
1069                    "summary": [
1070                        [
1071                            "WaveGauge1",
1072                            2,
1073                            0,
1074                            0.225,
1075                            0.025,
1076                            1,
1077                            0.025
1078                        ],
1079                        [
1080                            "WaveGauge2",
1081                            4,
1082                            0,
1083                            0.225,
1084                            0.025,
1085                            1,
1086                            0.025
1087                        ],
1088                        [
1089                            "WaveGauge3",
1090                            4.5,
1091                            0,
1092                            0.225,
1093                            0.025,
1094                            1,
1095                            0.025
1096                        ],
1097                        [
1098                            "WaveGauge4",
1099                            5.5,
1100                            0,
1101                            0.225,
1102                            0.025,
1103                            1,
1104                            0.025
1105                        ]
1106                    ],
1107                    "toggle": true,
1108                    "type": "particles"
1109                },
1110                {
1111                    "attribute": "Elevation",
1112                    "direction": "N/A",
1113                    "domain_end": [
1114                        5.525,
1115                        1,
1116                        0.25
1117                    ],
1118                    "domain_start": [
1119                        5.5,
1120                        0,
1121                        0.225
1122                    ],
1123                    "name": "WaveGauge4",
1124                    "operation": "Max",
1125                    "output_frequency": 30,
1126                    "preset": "Wave-Gauges",
1127                    "summary": [
1128                        [
1129                            "WaveGauge1",
1130                            2,
1131                            0,
1132                            0.225,
1133                            0.025,
1134                            1,
1135                            0.025
1136                        ],
1137                        [
1138                            "WaveGauge2",
1139                            4,
1140                            0,
1141                            0.225,
1142                            0.025,
1143                            1,
1144                            0.025
1145                        ],
1146                        [
1147                            "WaveGauge3",
1148                            4.5,
1149                            0,
1150                            0.225,
1151                            0.025,
1152                            1,
1153                            0.025
1154                        ],
1155                        [
1156                            "WaveGauge4",
1157                            5.5,
1158                            0,
1159                            0.225,
1160                            0.025,
1161                            1,
1162                            0.025
1163                        ]
1164                    ],
1165                    "toggle": true,
1166                    "type": "particles"
1167                }
1168            ],
1169            "scaling": {
1170                "cauchy_bulk_ratio": 1,
1171                "froude_length_ratio": 1,
1172                "froude_time_ratio": 1,
1173                "use_cauchy_scaling": false,
1174                "use_froude_scaling": false
1175            },
1176            "simulation": {
1177                "cauchy_bulk_ratio": 1,
1178                "cfl": 0.5,
1179                "default_dt": 0.001,
1180                "default_dx": 0.03,
1181                "domain": [
1182                    9.0,
1183                    1.0,
1184                    4.0
1185                ],
1186                "duration": 15.0,
1187                "fps": 2,
1188                "frames": 30,
1189                "froude_scaling": 1,
1190                "froude_time_ratio": 1,
1191                "gravity": [
1192                    0,
1193                    -9.80665,
1194                    0
1195                ],
1196                "initial_time": 0,
1197                "mirror_domain": [
1198                    false,
1199                    false,
1200                    false
1201                ],
1202                "particles_output_exterior_only": false,
1203                "save_suffix": ".bgeo",
1204                "time": 0,
1205                "time_integration": "Explicit",
1206                "use_cauchy_scaling": false,
1207                "use_froude_scaling": false
1208            },
1209            "subtype": "MPM",
1210            "type": "MPM"
1211        }
1212    ],
1213    "GeneralInformation": {
1214        "NumberOfStories": 1,
1215        "PlanArea": 0.01,
1216        "StructureType": "S2",
1217        "YearBuilt": 2013,
1218        "depth": 0.1,
1219        "height": 0.3,
1220        "location": {
1221            "latitude": 35.7087,
1222            "longitude": 139.7196
1223        },
1224        "name": "Wooden Column @ WU's Tsunami Wave Basin",
1225        "planArea": 0.01,
1226        "stories": 1,
1227        "units": {
1228            "force": "N",
1229            "length": "m",
1230            "temperature": "C",
1231            "time": "sec"
1232        },
1233        "width": 0.1
1234    },
1235    "Modeling": {
1236        "Bx": 0.1,
1237        "By": 0.1,
1238        "Fyx": 1000000,
1239        "Fyy": 1000000,
1240        "Krz": 10000000000,
1241        "Kx": 100,
1242        "Ky": 100,
1243        "ModelData": [
1244            {
1245                "Fyx": 1000000,
1246                "Fyy": 1000000,
1247                "Ktheta": 10000000000,
1248                "bx": 0.1,
1249                "by": 0.1,
1250                "height": 144,
1251                "kx": 100,
1252                "ky": 100,
1253                "weight": "RV.w"
1254            }
1255        ],
1256        "dampingRatio": 0.02,
1257        "height": 0.615,
1258        "massX": 0,
1259        "massY": 0,
1260        "numStories": 1,
1261        "randomVar": [
1262        ],
1263        "responseX": 0,
1264        "responseY": 0,
1265        "type": "MDOF_BuildingModel",
1266        "weight": "RV.w"
1267    },
1268    "Simulation": {
1269        "Application": "OpenSees-Simulation",
1270        "algorithm": "Newton",
1271        "analysis": "Transient -numSubLevels 2 -numSubSteps 10",
1272        "convergenceTest": "NormUnbalance 1.0e-2 10",
1273        "dampingModel": "Rayleigh Damping",
1274        "firstMode": 1,
1275        "integration": "Newmark 0.5 0.25",
1276        "modalRayleighTangentRatio": 0,
1277        "numModesModal": -1,
1278        "rayleighTangent": "Initial",
1279        "secondMode": -1,
1280        "solver": "Umfpack"
1281    },
1282    "UQ": {
1283        "parallelExecution": true,
1284        "samplingMethodData": {
1285            "method": "LHS",
1286            "samples": 20,
1287            "seed": 1
1288        },
1289        "saveWorkDir": true,
1290        "uqType": "Forward Propagation"
1291    },
1292    "correlationMatrix": [
1293        1
1294    ],
1295    "localAppDir": "/home/justinbonus/SimCenter/HydroUQ/build",
1296    "randomVariables": [
1297        {
1298            "distribution": "Normal",
1299            "inputType": "Parameters",
1300            "mean": 144,
1301            "name": "w",
1302            "refCount": 1,
1303            "stdDev": 12,
1304            "value": "RV.w",
1305            "variableClass": "Uncertain"
1306        }
1307    ],
1308    "remoteAppDir": "/home/justinbonus/SimCenter/HydroUQ/build",
1309    "resultType": "SimCenterUQResultsSampling",
1310    "runType": "runningLocal",
1311    "summary": [
1312    ],
1313    "workingDir": "/home/justinbonus/Documents/HydroUQ/LocalWorkDir"
1314}